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Abstract. Most algorithms for causal discovery require large sample
sizes for finding Markov equivalence classes that include the structure of
the true causal probabilistic graphical models. In some situation collect-
ing data could be difficult, especially for learning models that encode
the specific causal relations of a particular subject of a population.
Although transfer learning techniques have shown to be useful for im-
proving predictive associative models learned with limited datasets, their
application in the field of causal discovery has not been sufficiently
explored. In this paper, we explore transferring weighted instances of
auxiliary datasets for improving Markov equivalence classes learned with
otherwise limited datasets. A knowledge transfer algorithm extended
from the Greedy equivalence search algorithm that locally selects the
instances of the best auxiliary datasets is proposed. Preliminary results
using synthetic datasets suggest that our knowledge transfer algorithm
outperforms the base algorithm, increasing the adjacency recall from
0.58± 0.28 to 0.94± 0.13.

Keywords: causal discovery, transfer learning, causal probabilistic graph-
ical models.

1 Introduction

Causal probabilistic graphical models (causal PGMs) are useful tools for enco-
ding causal relations between variables of closed systems and provide information
to make predictions under manipulations. From observational data, it is possible
discovering Markov Equivalence Classes (MECs) that represent the structure of
a set of equivalent causal PGMs with the same joint probability distribution [2].

Learning MECs that include the true causal structure from a limited sample
size could be challenging using many existing algorithms, since they find these
MECs in the large sample limit [18, 5]. In some situations, it can be difficult co-
llecting data, especially for learning casual PGMs that encode the specific causal
relations for a particular member of a population. Transfer learning has shown
to be useful for improving models learned with limited datasets, allowing the
use of auxiliary data that come from different models with different probability
distributions [15].
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Many works have explored knowledge transfer for learning PGMs. However,
most of these studies have relied on the learning of associative PGMs [10, 12–14].
Limited work [8] has been done on learning causal PGMs from observational
data. Although other algorithms have been proposed for learning MECs from
multiple datasets, their aim is different of that for knowledge transfer algorithms.
These algorithms aim to discover MECs that include the common causal rela-
tions in all datasets, assuming that all datasets include a representative number
of samples [3, 16, 17].

The knowledge transfer algorithm proposed in [8] is a modification of the PC
algorithm that assumes all auxiliary datasets have the same relevance for learning
a target MEC, ignoring their differences in probability distributions. Moreover,
like other PC-based algorithms, require large sample sizes for the independence
conditional tests [5]. Score-based algorithms have shown to be more accurate for
learning MECs with small samples than constraint-based algorithms as PC [11].
In this paper, we present a preliminary knowledge transfer algorithm, based on
the score-based algorithm, Greedy Equivalence Search [2], for improving MECs
learned with limited datasets. We propose locally transferring the instances of the
best auxiliary datasets, considering their differences in probability distributions
with that of the target dataset.

The paper is organized as follows. In Section 2 concepts related to graphs and
the Greedy Equivalence Search algorithm are described. Our knowledge transfer
algorithm is presented in Section 3. In Section 4, the experimental results are
shown. Finally, the conclusions of this paper are presented in Section 5.

2 Preliminaries

2.1 Graph Concepts

Definition 1. A graph is a pair G = (V,E) formed by a set of nodes V =
{V1, ..., VN}, and a set of edges E ⊂ V ×V.

Two nodes are adjacent in a graph G, if there is an edge associating them.
When a graph only contains directed edges in the form (V1 → V2), it is called a
directed graph. In a directed edge in the form V1 → V2, V1 is said to be the
parent of V2, and V2, the child of V1. The set of parents of a node V is denoted
as Pa(V ).

Definition 2. Within a graph G, a directed path between two nodes V1 and
Vk is a sequence of nodes, (V1, V2, ..., Vk), starting at V1 and ending at Vk, where
k ≥ 2, and Vi → Vi+1 ∈ E for i = 1, ..., k − 1.

A directed path where the last node coincides with the first one is a directed
cycle. A directed graph in which there are no directed cycles is called a directed
acyclic graph (DAG). If an acyclic graph contains directed and undirected
edges, it is called a partially directed graph (PDAG).

The undirected graph resulting from ignoring the direction of edges in a DAG
is the skeleton of the DAG.
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A v-structure in a DAG is an ordered triple of nodes (X,Y, Z), such that,
the edges X → Y and Y ← Z are in the DAG, and there is no edge between the
nodes X,Z [2].

Definition 3. A Markov equivalence class is a set of directed acyclic graphs
that have the same skeletons and the same v-structures [6].

2.2 Greedy Equivalence Search Algorithm

Greedy Equivalence Search (GES) [2] is a score-based algorithm for heuristically
searching the best Markov equivalence class that represents a set of equivalent
DAGs including a true causal probabilistic graphical model. Given a dataset
D = {d1, ..., dm} containing m instances, where each di represent an assignment
of value to each variable of a set X = {X1, X2, X3, ..., Xn}, the best MEC G∗ =
(X,E) is found by maximizing a scoring function such that:

G∗ = arg max
G∈GC

score(G,D), (1)

where score(G,D) is a scoring function that measures the adjustment of D with
a candidate MEC G, and GC is the set of all MECs defined over X.

In the GES algorithm, Bayesian Dirichlet equivalent and Uniform (BDeU)
score function is used for learning MECs defined over discrete variables with com-
plete datasets D (without missing values). BDeU score is a descomposable func-
tion that can be expressed as the product of local functionsBDeU(Xi,Pa(Xi),D)
that only depends of a node Xi ∈ X and their parents Pa(Xi) as follows [7]:

BDeU(G,D) =

n∏
i=1

{BDeU(Xi,Pa(Xi),D)} , (2)

BDeU(Xi,Pa(Xi),D) =

qi∏
j=1

Γ (αij)

Γ (αij +Nij)

ri∏
k=1

Γ (αijk +Nijk)

Γ (αijk)
, (3)

where n is the number of nodes in G, qi is the number of values of Pa(Xi), ri
is the number of values of Xi, Nijk is the number of cases in which Xi = k and
its parents pa(Xi = k) = j, Nij =

∑
kNijk, and αijk = 1

riqi
is a Dirichlet prior

parameter with αij =
∑

k αijk.

BDeU score assigns the same value to all equivalent DAGs in the same MEC.
It is used in each iteration of the GES algorithm for evaluating the improvement
of the score when an edge is added or deleted. In the first stage of GES, starting
with a empty graph, the scoring function is used for heuristically searching the
edges that could be added of a MEC. And in the second stage, for searching the
edges that could be removed of a MEC.
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3 Instance-Based Transfer Learning GES

Our proposed preliminary algorithm, denominated as Knowledge Transfer Lear-
ning with Weighted instances GES (KTL-WeGES), is an extension of the Greedy
Equivalence Search (GES) algorithm that using the instances of two auxiliary
observational datasets tries to improve the skeleton identification of Markov
equivalence class (MEC) learned with limited dataset.

Under the assumptions of causal sufficiency and faithfulness conditions, the
best target MEC G∗T is found by maximizing a scoring function that combines
the instances of target DT and auxiliary DS datasets:

G∗T = arg max
GT∈GC

score(GT ,DT ,DS). (4)

For combining the instances of target and auxiliary datasets, local knowledge
transfer of the auxiliary datasets is explored. In this local knowledge transfer,
weighted instances of the auxiliary datasets are used for finding the best local
structure for a target MEC composed by a node Xi ∈ X with their parents
PaT (Xi). The local BDeU score defined in the Equation 3 is used for evaluating
the adjustment of the combination of weighted instances of the auxiliary DS

and target DT datasets, with a candidate local structure for a target MEC. In
this equation, Nijk counting the combination of auxiliary and target instances
as follows:

Nijk = (Nijk)T +Wi(Nijk)S , (5)

where (Nijk)T represents the number of cases in DT in which Xi = k and its
parents paT (Xi = k) = j, and (Nijk)S , the number of cases in DS in which
Xi = k and its parents paT (Xi = k) = j. Wi encode the relatedness of the
auxiliar dataset with the candidate local structure for a target MEC.

In the estimation of this relatedness, differences in the conditional proba-
bility distribution of Xi and its parents PaT (Xi), between the target dataset
PT (Xi|PaT (Xi)) and the auxiliary dataset PS(Xi|PaT (Xi)), are considered.
The difference between these distributions is evaluated with the Kullback-Leibler
divergence DKLD [1] as follows:

DKLD(PT (Xi|PaT (Xi)), PS(Xi|PaT (Xi))) ≈
∑

xi,paT (xi)

log

(
PT (xi|paT (xi))

PS(xi|paT (xi))

)
.

(6)

Using this difference, Wi is estimated by:

Wi = 2−|DKLD(PT (Xi|PaT (Xi)),PS(Xi|PaT (Xi)))|. (7)

With this function, when the difference between target and auxiliary datasets
increases, it is penalized with weights nearly to zero; and it assigns weights nearly
to one, to small differences lower to one.
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4 Experiment and Results

4.1 Generation of Synthetic Datasets

Synthetic datasets are generated from ground truth Bayesian networks which
are BN with known structure and parameters. Target and auxiliary datasets are
generated in the following form [10]. Target dataset is sampled from the ground
truth BN, and auxiliary datasets, from related BNs. Related BNs are generated
modifying in certain percent (pMod) the edges of the ground truth models,
adding pMod edges, followed by deleting edges in the same pMod percent.
Increasing the pMod, we generate BN less related to the ground truth model.
From each related BN are estimated its parameters using a dataset sampled from
the ground truth BN. Each auxiliary dataset is sampled from its corresponding
related BN using forward sampling, in which the values of each variable Xi are
sampled in ancestral order (parents before their children), in such form that its
values xi are drawn from P (xi|pa(xi)).

4.2 Experimental Design

In this experiment, we hypothesized that the KTL-WeGES algorithm outper-
form the GES algorithm. The performance of the KTL-WeGES algorithm was
evaluated in its ability for finding the skeleton of the ground truth models. In
the evaluation, the Coma [4] and Asia [9] binary BNs with five and eight nodes,
respectively, were used as ground truth models. The edges of the original BNs
were modified in 10% and 40%, for generating the two related BNs. Considering
extreme cases of relatedness (most and least related) were selected these param-
eters. Coma and Asia BNs and their corresponding related BNs are presented in
Figures 1 and 2, respectively. Datasets with 1600 and 12800 samples for Coma
and Asia were used for estimating the parameters of related BNs.

Taking into account that after modifying the ground truth BNs would in-
crease the number of parents for some nodes. The sample size was estimated
using samplesize = 100(2k), considering that a node in a related BN may
have at most k = n − 1 parents (where n is the number of nodes in the
BN). For each auxiliar dataset, 1600 samples from related BNs of Coma and
12800 samples from related BNs of Asia (using the same formula for the pa-
rameters estimation), were obtained. Ten datasets varying the sample size were
obtained for the target domain. For Coma, the set of target datasets includes
datasets with size {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}, and for Asia,
with {80, 160, 240, 320, 400, 480, 560, 640, 720, 800}. Ten runs of this scenario were
used to evaluate the algorithms.

The models obtained by the algorithms were evaluated using normalized
structural Hamming distance (NSHD), adjacency precision (TPR), and adja-
cency recall (TDR). Normalized structural Hamming distance is the minimum
number of edge insertions, deletions, and changes needed to transform a model
into another. Adjacency precision is the ratio TP/(TP + FP ), and the ratio
TP/(TP + FN) is the adjacency recall.
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Where TP is the number of adjacencies that are in common in the estimated
model and ground truth model without considering the edge orientation; FP is
the number of adjacencies that are present in the estimated model but not in
the ground truth model; and FN is the number of adjacencies that are present
in the ground truth model but not in the estimated model [17].

(a) (b) (c)

Fig. 1. (a) Coma and its related BNs created by modifying the edges in (b) 10% and
(c) 40%.

4.3 Results

The experimental results are summarized in Tables 1 and 2 for Coma and Asia,
respectively. In these tables, the averages for each metric, over the ten test target
datasets and all experimental runs, obtained by transferring instances from the
most related, the least related, and both auxiliary datasets, are presented.

The results show that KTL-WeGES seems to improve the skeleton identifi-
cation of the ground truth models with respect to GES. In the case of Coma,
considering the results for NSHD (the best NSHD is obtained when it is zero),
KTL-WeGES seems to decrease the differences between the skeleton of the
true and that one of the estimated model. The results for this model also
show that, although the performance of the TPR decrease, KTL-WeGES are
discovering more number of edges, increasing the TDR. The results for Asia
show an improvement in the TPR and TDR rates.
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(a) (b) (c)

Fig. 2. (a) Asia and its related BNs created by modifying the edges in (b) 10% and
(c) 40%.

Table 1. Averages ± standard deviations of TPR, TDR, and NSHD for Coma.

Method TPR TDR NSHD

GES 0.90± 0.13 0.59± 0.25 0.54± 0.25

KTL-WeGES 0.86± 0.11 0.94± 0.10 0.40± 0.31
(most related)

KTL-WeGES 0.85± 0.09 0.98± 0.06 0.36± 0.28
(least related)

KTL-WeGES 0.84± 0.09 0.96± 0.08 0.38± 0.27
(both auxiliar datasets)

They also show that the differences between the skeleton of the true and that
one of the estimated model increase, which indicate that the estimated model
has more edges than the true model (spurious edges).

From the results, it also can be observed that KTL-WeGES with all strategies
(transferring from all datasets, the best and least related auxiliary dataset)
improves the TDR, being better transferring from the least related auxiliary
dataset. Although, the NSHD and TPR results show that KTL-WeGES discovers
more spurious edges when the number of nodes increases. It indicates that the
scoring function prefers dense graphs, and hence KTL-WeGES has problems for
deleting edges.

Regarding execution time for learning a single MEC on average, KTL-WeGES
takes 0.46 and 10.78 seconds for learning models of Coma and Asia, respectively,
with a 1.8 GHz Intel Core i7 processor with 8 GB RAM, using Matlab 2019a.
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Table 2. Averages ± standard deviations of TPR, TDR, and NSHD for Asia.

Method TPR TDR NSHD

GES 0.71± 0.27 0.58± 0.31 0.98± 0.44

KTL-WeGES 0.95± 0.07 0.90± 0.19 1.94± 0.33
(most related)

KTL-WeGES 0.97± 0.05 0.90± 0.19 1.98± 0.35
(least related)

KTL-WeGES 0.97± 0.05 0.90± 0.19 1.99± 0.37
(both auxiliar datasets)

5 Conclusions

A preliminary instance-based transfer algorithm for improving Markov equiva-
lence classes learned with limited datasets was presented. Our algorithm locally
selects the instances from the two auxiliary datasets for searching the best set
of parents of each node in a target MEC.

Experimental results show that our algorithm outperforms the GES algo-
rithm in the skeleton identification for MECs, transferring weighted instances
from the most related, the least related and both auxiliary datasets. Preliminary
results suggest that our algorithm seems to be promising for discovering MECs.

As future work, we consider extending the local knowledge transfer of the
weighted-instances for more than two auxiliary datasets and also analyzing other
scoring functions and score-based algorithms that have shown better perfor-
mance deleting false edges. Also, it is contemplated improving the algorithm for
discovering the v-structures of MECs.
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